P.R.GOVT.COLLEGE (AUTONOMOUS), KAKINADA P.R.GOVI. CULLEGE (AUTOMOTIVE IN P.R.GOVI. CULLEGE IN P.R.GOVI. CULLEGE (AUTOMOTIVE IN P.R.GOVI. CULLEGE IN Course: DIFFERENTIAL EQUATIONS Total credits: 05

Total Hrs. of Teaching-Learning: 90 @ 6 hr/Week

• To classify differential equations by order, linearity and homogeneity. To classify differential equations by using analytic techniques.

To compute solutions to various differential equations to various differential equations to various differential equations. OBJECTIVES:

- To compute solutions to various unferential equation, to identify the appropriate method for solving the given differential equation.

- To get awareness about the applications.

Unit 1: Differential equations of first order and first degree Differential equations of first order and most algorithms. Change of variables.

Exact differential equations, integrating factors, linear Differential equations, Differential equations, integrating factors, linear form. Change of variables. equations reducible to linear form, Change of variables.

Unit 2: Orthogonal Trajectories, Differential equations of the first order

(18 hours)

but not of the first degree

Orthogonal Trajectories, Equations solvable for p; Equations solvable for y; Equations
Orthogonal Trajectories, Equations (or y); Clairaut's equation Orthogonal Trajectories, Equations that do not contain x (or y); Clairaut's equation. solvable for x; Equations that do not contain x

Unit 3: Higher Order Linear Differential Equations (with constant coefficients) -- I (18 hours)

Solution of homogeneous linear differential equations of order n with constant Solution of homogeneous linear differential equations with coefficients. Solution of the non-homogeneous linear differential equations with coefficients. Solution of the holl-holls by means of polynomial operators when constant coefficients f(D)y = Q(x) by means of polynomial operators when $Q(x) = be^{ax}, Q(x) = b \sin ax$ or $b\cos ax$.

Unit 4: Higher Order linear differential equations (with constant coefficients) ---- II (18 hours)

Solution of the non-homogeneous linear differential equations with constant coefficients f(D)y = Q(x) by means of polynomial operators $Q(x) = bx^k, Q(x) = e^{ax}V, Q(x) = xV \text{ and } Q(x) = x^mV.$

Unit 5: Higher Order linear differential equations: (with Non constant coefficients)

(18 hours)

Method of variation of parameters, Linear differential equations with non-constant coefficients, The Cauchy-Euler equation.

Additional Inputs:

1. Simultaneous differential equations

2. Applications of 1st order and 1st degree differential equations. (No question to be set from this part)

Prescribed Text Books:

1. Scope as in "Differential Equations and their applications by ZafarAhsan, published by prentice-Hall of India Pvt. Ltd. New Delhi-Second edition.

Reference Books:

- 1. A text book of Mathematics-Volume-I published by S.Chand& Company.
- 2. Differential Equations by Santhi Narayana, S. Chand& Company.

BLUE PRINT FOR QUESTION PAPER PATTERN

	SEMEST	EK-I		$\overline{}$	Marks
Unit	TOPIC	v.s.a.Q	s.a.Q	E.Q	allotted
1	Differential Equations of 1 st order and 1 st degree	1	Î	2	22
2	Orthogonal Trajectories, Differential Equations of 1st order but not	1	· 1	2	22
3	of 1 st degree Higher Order Linear Differential Equations (with constant coefficients) - I	1	1	1	14
4	Higher Order Linear Differential Equations (with constant coefficients) - II	1	1	2	22
5	Higher Order Linear Differential Equations (with non constant coefficients)	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	1	94
	TOTAL	5	5	8	94

V.S.A.Q = Very short answer questions (1 mark)

S.A.Q = Short answer questions (5 marks)

E.Q = Essay questions (8 marks)

Very short answer questions $: 5 \times 1 = 05$ Short answer questions $: 3 \times 5 = 15$ Essay questions $: 5 \times 8 = 40$

.....

Total Marks = 60

Max. Marks: 60

Time: 2Hrs 30 min

PART-I

Answer ALL the questions. Each question carries 1 mark

5X1M = 5M.

1. Write the condition for a differential equation of first order to be an exact differential equation.

2. Solve $(p - x)(p - y^2) = 0$.

3. Find y_c of the differential equation $(D^2 + 4D + 4)y = 3xe^{-2x}$.

4. Find the particular integral of $D^2y = x^2$.

5. In a D.E. $\frac{d^2y}{dx^2} + P\frac{dy}{dx} + Qy = R$, if 1 + P + Q = 0 then what is a part of complementary

PART-II

Answer any THREE questions, each question carries 5 marks.

3X5M=15M

6. Solve $(e^y + 1)\cos x \, dx + e^y \sin x \, dy = 0$.

7. Solve (py + x)(px - y) = 2p.

8. Solve $\frac{d^2y}{dx^2} - \frac{dy}{dx} + 2y = \sin 2x.$

9. Solve $(D^2 - 2D + 1)y = x^2e^{3x}$.

10. Solve $(D^2 - 2D)y = e^x \sin x$, by the method of variation of parameters.

PART-III

Answer any FIVE questions from the following by choosing at least TWO from each section. Each question carries 8 marks. 5X8M = 40M

SECTION-A

11. Solve
$$\left(y + \frac{y^3}{3} + \frac{x^2}{2}\right) dx + \frac{1}{4}(x + xy^2) dy = 0.$$

12. Solve $(1 + y^2)dx = (tan^{-1}y - x)dy$.

13. Solve $y^2 \log y = xpy + p^2$.

14. Find the orthogonal trajectories of the family of curves $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$, where 'a' is a parameter.

SECTION-B

15. Solve $(D^2 - 4D + 3)y = \sin 3x \cdot \cos 2x$

16. Solve $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 13y = 8e^{3x} \sin 2x$.

17. Solve $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = xe^x \sin x$.

18. Solve $x^2y'' - 2x(1+x)y' + 2(1+x)y = x^3$.